

Specialist for Pumping Technology

И Н Н О В А Ц И И Э Ф Ф Е К Т И В Н О С Т Ь К А Ч Е С Т В О

Модернизация и изменение номинальных характеристик консольных насосов руководство для заказчиков

ИНДЕКС

СОДЕРЖАНИЕ

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА	3
возможности модернизации	
НАСОСЫ, ПОДЛЕЖАЩИЕ МОДЕРНИЗАЦИИ	4
УСЛОВИЯ ПРИМЕНЕНИЯ, ПРИ КОТОРЫХ МОДЕРН	ИЗАЦИЯ ЦЕЛЕСООБРАЗНА4
СОЕДИНЕНИЕ КРЫШКИ И КОРПУСА НАСОСА	
СТАРАЯ КОНСТРУКЦИЯ	5
НОВАЯ КОНСТРУКЦИЯ	6
ПРОГРАММА МОДЕРНИЗАЦИИ	
ЧТО НЕОБХОДИМО УЧИТЫВАТЬ ПРИ МОДЕРНИЗА	\ЦИИ 7
СТАНДАРТНЫЙ ОБЪЕМ РАБОТ ПО МОДЕРНИЗАЦИИЕ	
ВАРИАНТ А	8
МОДИФИЦИРОВАННЫЙ ОБЪЕМ РАБОТ ПО МОДЕРНИЗА	
ВАРИАНТ В	
ВАРИАНТ С	
ВАРИАНТ D	
ВИД В РАЗРЕЗ Е	
СТАНДАРТНАЯ МОДЕРНИЗАЦИЯ	
ГАБАРИТНЫЙ ЧЕРТЕЖ	4.4
ОХЛАЖДАЮЩИЙ ЗМЕЕВИК	
РЕКОМЕНДАЦИИ ПО ВЫБОРУ ПОДШИПНИКОВ	45
ДЕРЖАТЕЛЬ КОРПУСА ПОДШИПНИКОВ	

Конструктивные особенности и преимущества

- Соответствуют требованиям последнего издания стандарта АРІ 610.
- Камера уплотнения предназначена для установки одинарных, двойных или двойных сильфонных уплотнений в исполнении по последнему или предыдущим изданиям стандарта API 682
- Быстрая поставка. Небольшая длительность останова по сравнению с переходом на эксплуатацию нового насоса.
- Исключаются проектно-конструкторские работы и необходимость изменения имеющихся технологических трубопроводов и фундаментов, которые связаны с большими затратами и требуют много времени. *
- Все детали корпуса подшипников входят в стандартный комплект запасных частей и могут быть заменены за несколько дней, тогда как для замены устаревших комплектующих потребовалось бы несколько месяцев
- Повышение надежности насоса и уменьшение затрат на техническое обслуживание за счет использования ротора, имеющего более высокую устойчивость благодаря меньшему значению L3/D4, и более надежной схемы расположения подшипников
- Работы по модернизации могут проводиться одновременно с расчетной оптимизацией проточной части для улучшения соответствия рабочей точки с максимальным кпд текущим эксплуатационным требованиям заказчика.
- Увеличение средней наработки на отказ и уменьшение затрат на техническое обслуживание
- Использование предвключенной ступени для улучшения кавитационных характеристик насоса

^{*} В большинстве случаев работы по модернизации можно выполнить без изменения размеров насоса. Одно из немногих исключений – доработка промежуточного элемента муфты. Однако некоторые старые насосы с внутренними уплотнениями имеют очень небольшую длину, при которой могут потребоваться перемещения привода. Проверьте габаритные размеры стандартного комплекта для модернизации (по виду в разрезе), чтобы убедиться в необходимости выполнения этой операции.

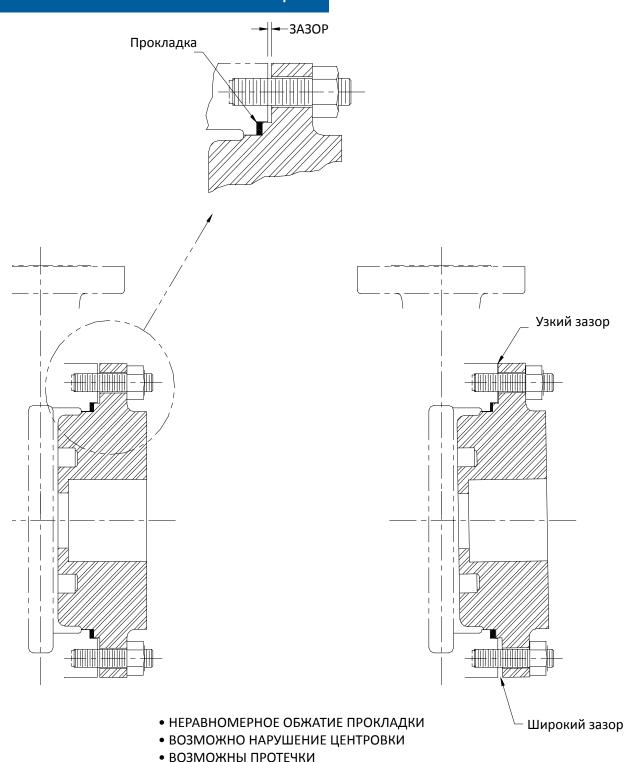
Возможности модернизации

НАСОСЫ, ПОДЛЕЖАЩИЕ МОДЕРНИЗАЦИИ

Все консольные технологические насосы со следующими характеристиками

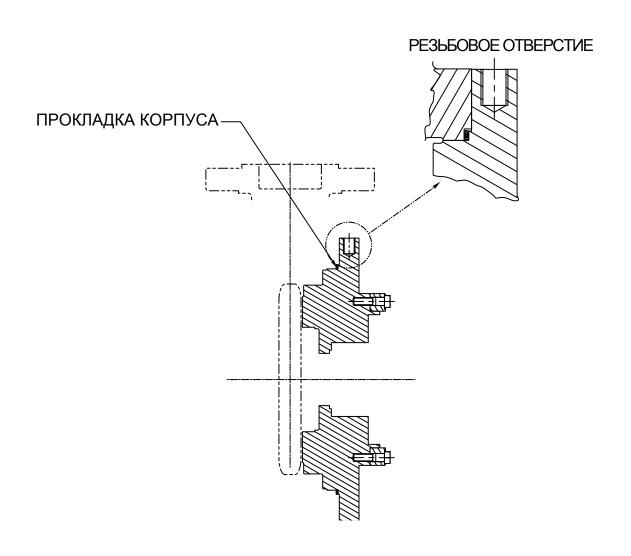
- С односторонним всасыванием
- С двухсторонним всасыванием*
- Двухступенчатые*
- С высоким давлением на всасывании*
- * Проверьте специальные параметры, подлежащие контролю, и цены в местном представительстве или ближайшем сервисном центре компании Ruhrpumpen.

УСЛОВИЯ ПРИМЕНЕНИЯ, ПРИ КОТОРЫХ МОДЕРНИЗАЦИЯ ЦЕЛЕСООБРАЗНА


Возможности для модернизации имеются практически во всех случаях. Условия, при которых модернизация, скорее всего, приведет к положительным результатам, перечислены ниже:

- Перекачка жидкостей с низкой плотностью (низкой смазочной способностью), когда увеличение протечки через уплотнение является проблемой
- Регулярные отказы уплотнений, обусловленные значительным прогибом вала, который часто встречается в насосах, выполненных по старым редакциям стандартов API.
- Перекачка жидкостей с высоким давлением паров, когда возможно местное вскипание жидкости в уплотнении
- Насосы, работающие с низкой подачей (относительно подачи в рабочей точке с максимальным кпд), при которой могут возникнуть значительные радиальные нагрузки.
- Насосы, работающие с сильными вибрациями (вызванными неправильным расчетом и конструкцией вала / подшипниковых опор).
- Постоянные проблемы с подшипниками, включая перегревы, которые могут быть устранены путем использования корпусов подшипников большего размера, имеющих увеличенную пропускную способность по маслу и улучшенное охлаждение
- Использование корпусов и крышек корпусов устаревшей конструкции в некоторых насосах от конкурирующих изготовителей (см. ниже).
- Насосы, у которых планируется заменить чугунные корпуса подшипников. Использование комплектов для модернизации будет идеальным решением этой задачи.
- Загрязнение охлаждающих рубашек камер уплотнений и корпусов подшипников. В большинстве случаев модернизация позволяет отказаться от использования охлаждающих рубашек.

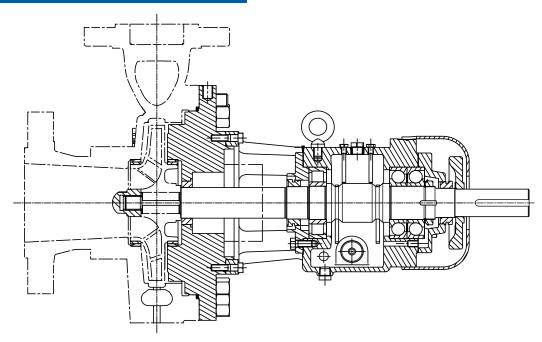
Указанные выше проблемы, а также признаки нарушения нормальной работы во многих случаях можно устранить путем модернизации конструкции насоса и/или оптимизации проточной части. Модернизация создаст оптимальные условия для работы торцевого уплотнения, а оптимизация проточной части для улучшения гидравлических характеристик позволит приблизить режим работы насоса к рабочей точке с максимальным кпд, обеспечивая тем самым высокую надежность и длительный срок службы уплотнения


Соединение крышки и корпуса насоса

СТАРАЯ КОНСТРУКЦИЯ

Соединение крышки и корпуса насоса

новая конструкция

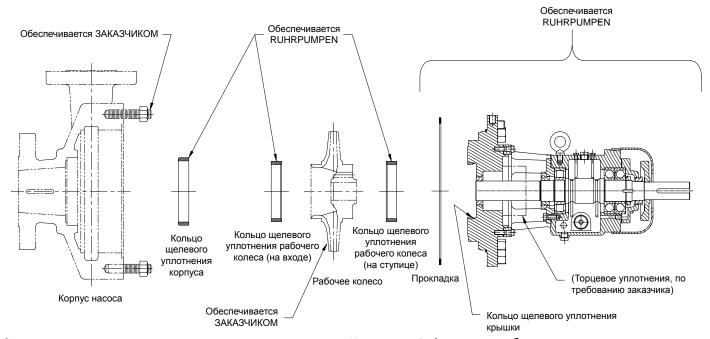

Консольные насосы Модернизация

Программа модернизации

ЧТО НЕОБХОДИМО УЧИТЫВАТЬ ПРИ МОДЕРНИЗАЦИИ

- Если компании Ruhrpumpen является изготовителем насоса, изменяются ли исходные размеры корпуса или рабочего колеса в результате модернизации? Изготовлены ли эти детали заводом-изготовителем насоса? Если никаких изменений нет, необходимо заполнить только первую страницу опросного листа по модернизации (стр. 32).
- Если компания Ruhrpumpen не является изготовителем насоса, то тогда вся необходимая информация должна быть указана в прилагаемом опросном листе по модернизации.
- Требуются ли изменения металлических конструкционных материалов?
- Требуются ли изменения гидравлических характеристик?
- Компания Ruhrpumpen, по мере возможности, предпочитает собирать комплекты для модернизации на своем заводе и отправлять их заказчику для монтажа на его объекте. Однако компания действует в соответствии с пожеланиями заказчика. См. варианты модернизации, рассмотренные ниже.
- Предоставляет ли заказчик новое уплотнение или компания Ruhrpumpen должна будет составить ценовое предложение на поставку новых уплотнений?
- Требуется ли система промывки (по схеме 52 и т.п.) для нового уплотнения?
- Требуется ли заказчику помощь при диагностике причин имеющихся проблем?
- Требуется ли заказчику помощь при монтаже модернизированных насосов?

ВАРИАНТ А

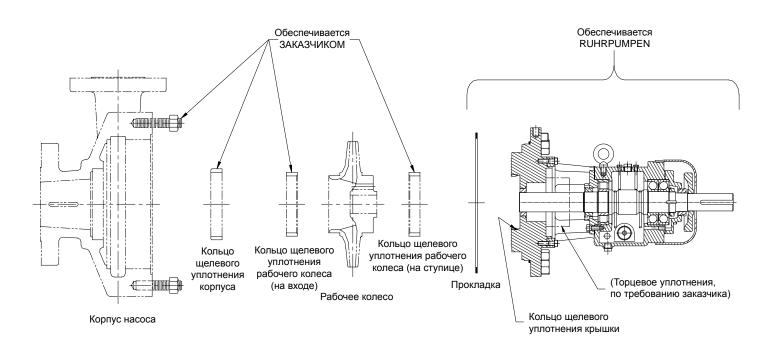


Насос возвращается компании Ruhrpumpen для ремонта. Наша компания выполняет все измерения, механическую обработку и сборочные работы. В объем работ входит следующее:

- Разборка, очистка и проверка состояния имеющегося корпуса и рабочего колеса
- Составление протокола контроля состояния полученного оборудования с приложение необходимых цифровых фотографий.
- Проточка посадочных поверхностей фланцев, лап и поверхностей под прокладку. Доводка или шлифовка посадочных поверхностей и замена шпилек и гаек новыми шпильками и гайками из стали А 193 Grade B7 (оцинкованной).
- Новые вал насоса, крышка корпуса и гайка рабочего колеса
- Новый держатель корпуса подшипников SCE
- Новые кольца щелевых уплотнений
- Новая прокладка
- Установка колец щелевых уплотнений рабочего колеса и динамически отбалансированного рабочего колеса
- Установка торцевого уплотнения
- Полная сборка насоса, окраска и подготовка к отгрузке
- Руководство по установке и техническому обслуживанию (с чертежом вида в разрезе и перечнем составных частей)

Объем работ не предусматривает дополнительный ремонт корпуса, муфты, ограждения муфты и торцевых уплотнений. Примечание: заказчик получает комплектный насос, готовый к монтажу.

ВАРИАНТ В

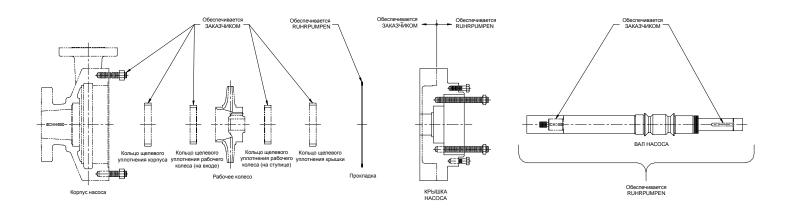


Заказчик ремонтирует насос на своем предприятии. Компания Ruhrpumpen обеспечивает следующее:

- Новые вал насоса, крышка корпуса и гайка рабочего колеса
- Новый держатель корпуса подшипников SCE
- Новые кольца щелевых уплотнений
- Новая прокладка
- Эскиз, на котором показаны конструктивные изменения корпуса насоса
- Руководство по установке и техническому обслуживанию (с чертежом вида в разрезе и перечнем составных частей)

Замечания — Заказчик проверяет состояние корпуса насоса и рабочего колеса, и передает заполненный опросный лист на модернизацию, составленный Ruhrpumpen, в ближайший сервисный центр Ruhrpumpen. Заказчик ремонтирует корпус насоса, выполняет механическую обработку по эскизу и проводит сборку насоса. Шпильки корпуса с гайками обеспечиваются заказчиком. Заказчик устанавливает кольца щелевых уплотнений и выполняет балансировку рабочего колеса.

ВАРИАНТ С



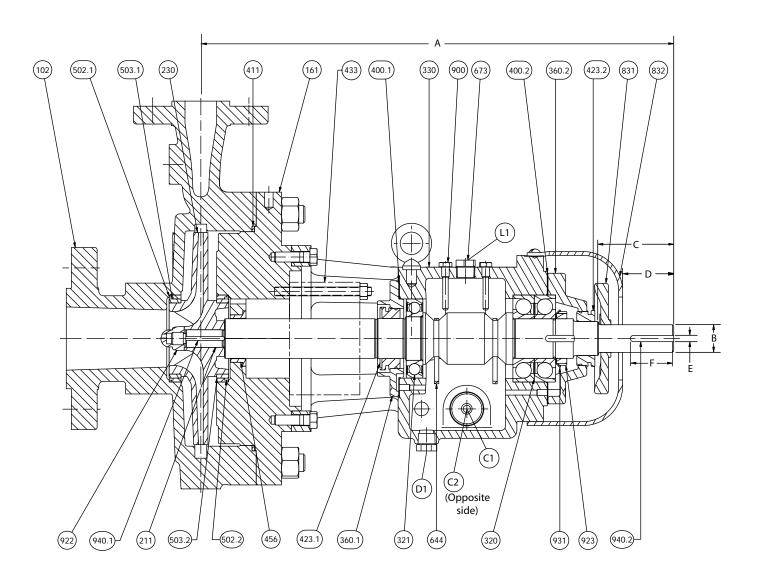
Заказчик ремонтирует насос на своем предприятии. Компания Ruhrpumpen обеспечивает следующее:

- Новый вал насоса, крышка корпуса и гайка рабочего колеса
- Новый держатель корпуса подшипников SCE
- Новая прокладка
- Размеры колец щелевых уплотнений
- Эскиз, на котором показаны конструктивные изменения корпуса насоса
- Руководство по установке и техническому обслуживанию (с чертежом вида в разрезе и перечнем составных частей)

Замечания — Заказчик проверяет состояние корпуса насоса и рабочего колеса, и передает заполненный опросный лист на модернизацию, составленный Ruhrpumpen, в ближайший сервисный центр Ruhrpumpen. Заказчик ремонтирует корпус насоса, выполняет механическую обработку по эскизу и проводит сборку насоса. Шпильки корпуса с гайками обеспечиваются заказчиком. Заказчик устанавливает кольца щелевых уплотнений и выполняет балансировку рабочего колеса.

ВАРИАНТ D

Заказчик ремонтирует насос на своем предприятии. Компания Ruhrpumpen обеспечивает следующее:

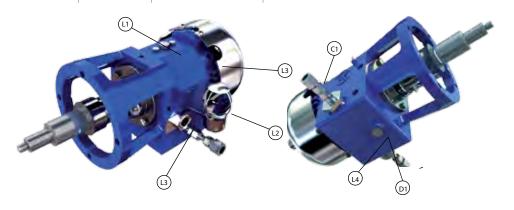

- Новый, частично обработанный вал, имеет необработанные хвостовики без шпоночных пазов или резьбы под гайку рабочего колеса
- Новая, частично обработанная крышка насоса (камеры уплотнения и держатель корпуса подшипников) имеет размеры с припуском на чистовую обработку заказчиком
- Руководство по установке и техническому обслуживанию (с чертежом вида в разрезе и перечнем составных частей)
- Новая прокладка

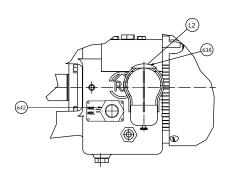
Замечания — Заказчик проверяет состояние корпуса насоса и рабочего колеса, и передает заполненный опросный лист на модернизацию, составленный Ruhrpumpen, в ближайший сервисный центр Ruhrpumpen. Заказчик ремонтирует корпус насоса, выполняет механическую обработку по эскизу и проводит сборку насоса. Заказчик выполняет чистовую обработку вала и крышки насоса, а также механическую обработку колец щелевых уплотнений. Шпильки корпуса с гайками обеспечиваются заказчиком. Заказчик устанавливает кольца щелевых уплотнений и выполняет балансировку рабочего колеса.

Вид в разрезе

СТАНДАРТНАЯ МОДЕРНИЗАЦИЯ

Проект модернизации разрабатывается применительно к конкретным условиям применения.

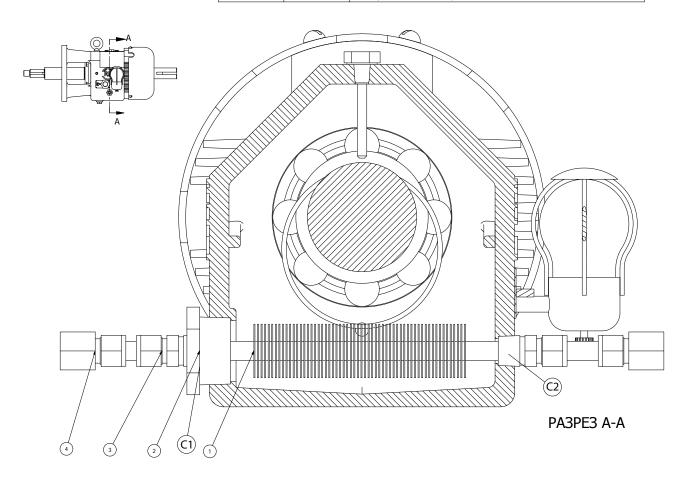

Консольные насосы Модернизация


РАЗМЕРЫ ДЕРЖАТЕЛЯ КОРПУСА ПОДШИПНИКОВ						
	СТАНДАРТНЫЕ РАЗМЕРЫ (ДЮЙМ)					
	(возможно изм	1ЕНЕНИЕ	PA3MI	ЕРОВ В		
ТИПОРАЗМЕР	СООТВ	СООТВЕТСТВИИ С				
	ТРЕБОВАНИЯМИ ЗАКАЗЧИКА)					
	А	В	С	D		
35	23.5	1.375	3.75	2.541		
55	27.688 / 28.25	2.125	5	4.454		
75	31.5 / 31.688 / 31.875	3	5.875	4.641		
	35.750 3.5 6.750 5.193					

		СТАНДАРТНЫЕ РАЗМЕРЫ (ДЮЙМ)			
ТИПОРАЗМЕР ДЕРЖАТЕЛЯЕ	НАИМЕНОВАНИЕ	E	F		
		ШИРИНА	ГЛУБИНА	длина	
35	Вал No.1	0.313	0.1785	2	
33	Вал No.2	0.313	0.1785	2	
	Вал No.3	0.501	0.2845	3 3/4	
55	Вал No.4	0.5015	0.2845	3 3/4	
	Вал No.5	0.751	0.4275	4 1/4	
75	Вал No.6	0.751	0.4275	4 1/4	
	Вал No.7	0.751	0.4275	4 1/4	
90	Вал No.8	0.876	0.4975	6	

SCE BRACKET CONNECTIONS					
ПО3.	РАЗМЕРЫ	НАИМЕНОВАНИЕ	СОСТОЯНИЕ ПРИСОЕДИНЕНИЯ		
C1	1.50 NPT	ВХОД ОХЛАЖДАЮЩЕЙ ВОДЫ	ОТКРЫТО (СМ. ЧЕРТЕЖ НА СТР. 14)		
C2	0 50 NPT	ВЫХОД ОХЛАЖДАЮЩЕЙ ВОДЫ	ОТКРЫТО (СМ. ЧЕРТЕЖ НА СТР. 14)		
D1	0 50 NPT	МАСЛЯНЫЙ ДРЕНАЖ ПОДШИПНИКОВ	ЗАГЛУШЕНО		
L1	0.75 NPT	ШТУЦЕР ЗАЛИВКИ МАСЛА / ВЕНТИЛЯЦИИ СИСТЕМЫ СМАЗКИ	УСТАНОВЛЕН ВОЗДУШНИК		
L2	0.25 NPT	МАСЛЕНКА ПОСТОЯННОГО ПОДКЛЮЧАЕТСЯ ТРУБНАЯ УРОВНЯ ПОСТАВЛЯЕМАЯ RUHRP			
L3	0.25 NPT	ВХОД МАСЛЯНОГО ТУМАНА	ЗАГЛУШЕНО		
L4	0.50 NPT	ВЫХОД МАСЛЯНОГО ТУМАНА	ЗАГЛУШЕНО		

	ПЕРЕЧЕНЬ ДЕТАЛЕЙ				
поз. кол.			НАИМЕНОВАНИЕ		
	102	1	КОРПУС СО СПИРАЛЬНЫМ ОТВОДОМ		
	161	1	КРЫШКА КОРПУСА		
	211	1	ВАЛ НАСОСА		
	230	1	РАБОЧЕЕ КОЛЕСО		
	320	2	АНТИФРИКЦИОННЫЙ ПОДШИПНИК		
	321	1	РАДИАЛЬНЫЙ ШАРИКОВЫЙ ПОДШИПНИК		
	330	1	ДЕРЖАТЕЛЬ КОРПУСА ПОДШИПНИКОВ		
	360.1	1	КРЫШКА КОРПУСА ПОДШИПНИКОВ		
	360.2	1	КРЫШКА КОРПУСА ПОДШИПНИКОВ		
	400.1	1	ПРОКЛАДКА		
	400.2	1	ПРОКЛАДКА		
	411	1	СОЕДИНИТЕЛЬНОЕ КОЛЬЦО		
	423.1	1	ЛАБИРИНТНОЕ УПЛОТНЕНИЕ		
	423.2	1	ЛАБИРИНТНОЕ УПЛОТНЕНИЕ		
	433	1	ТОРЦЕВОЕ УПЛОТНЕНИЕ		
	456	1	ДРОССЕЛЬНАЯ ВТУЛКА КАМЕРЫ УПЛОТНЕНИЙ		
	502.1	1	КОЛЬЦО ЩЕЛЕВОГО УПЛОТНЕНИЯ КОРПУСА (НА СТОРОНЕ ВХОДА РАБОЧЕГО КОЛЕСА)		
	502.2	1	КОЛЬЦО ЩЕЛЕВОГО УПЛОТНЕНИЯ КОРПУСА (НА СТОРОНЕ СТУПИЦЫ РАБОЧЕГО КОЛЕСА)		
	503.1	1	КОЛЬЦО ЩЕЛЕВОГО УПЛОТНЕНИЯ РАБОЧЕГО КОЛЕСА (СО СТОРОНЫ ВХОДА)		
	503.2	1	КОЛЬЦО ЩЕЛЕВОГО УПЛОТНЕНИЯ РАБОЧЕГО КОЛЕСА (СО СТОРОНЫ СТУПИЦЫ)		
	638	1	МАСЛЕНКА ПОСТОЯННОГО УРОВНЯ		
	642	1	МАСЛОУКАЗАТЕЛЬНОЕ СТЕКЛО		
	644	2	МАСЛООТРАЖАЮЩЕЕ КОЛЬЦО		
	673	1	ФИЛЬТР ВЕНТИЛЯЦИОННОЙ ЛИНИИ		
	831	1	ВЕНТИЛЯТОР		
	832	1	КОЖУХ ВЕНТИЛЯТОРА		
	900	2	СТОПОРНЫЙ ВИНТ		
	922	1	ГАЙКА РАБОЧЕГО КОЛЕСА		
	923	1	ГАЙКА ПОДШИПНИКА		
	931	1	СТОПОРНАЯ ШАЙБА		
	940.1	1	ШПОНКА		
	940.2	1	ШПОНКА		



Габаритный чертеж

ОХЛАЖДАЮЩИЙ ЗМЕЕВИК

Изменения размеров допускаются только после рассмотрения и утверждения проектно-конструкторским отделом .

ПОЗ.	кол.	НАИМЕНОВАНИЕ
1	1	ОХЛАЖДАЮЩИЙ ЗМЕЕВИК ИЗ ТРУБКИ 15" – 0,500
2		ПЕРЕХОДНИК 1 1/2- 1/2 NPT
3	2	ШТУЦЕР ИЗ ТРУБКИ 0,500 С НАРУЖНОЙ РЕЗЬБОЙ 1/2 NPT
4	2	ШТУЦЕР ИЗ ТРУБКИ 0,500 С ВНУТРЕННЕЙ РЕЗЬБОЙ 1/2 NPT

Рекомендации по выбору подшипников

ДЕРЖАТЕЛЬ КОРПУСА ПОДШИПНИКОВ

Максимальная мощность в зависимости от типоразмера держателя корпуса подшипников и быстроходности насоса.

Плотность энергии.

P max * n max

Требования в соответствии с последним издание стандарта АРІ 610, Табл. 9 – Выбор подшипников, Прим. с):

Pmax * nmax < 4 000 000 кВт/мин.

ТИПОРАЗМЕР КОРПУСА ПОДШИПНИКОВ	МОЩНОСТЬ РМАХ	МОЩНОСТЬ РМАХ	50 ГЦ NMAX	PMAX*NMAX
SCE	[кВт]	[л.с.]	[мин-1]	[кВт/мин]
35	31.4	42	2 960	92 944
55	385.5	517	2 960	1 141 080
75	793.4	1064	2 960	2 348 464
90	912.0	1223	1 480	1 349 760

ТИПОРАЗМЕР КОРПУСА ПОДШИПНИКОВ	МОЩНОСТЬ РМАХ	МОЩНОСТЬ РМАХ	50 ГЦ NMAX	PMAX*NMAX
SCE	[кВт]	[л.с.]	[мин-1]	[кВт/мин]
35	70	93.9	3 560	249 200
55	609	816.7	3 560	2 168 040
75	1000	1341	3 560	3 560 000
90	1457	1953.9	1 780	2 593 460

Примечание:

Ртах- максимальная номинальная мощность для держателя корпуса подшипников указанного типоразмера .

Наружный диаметр держатель корпуса подшипников необходимо учитывать при установке имеющего корпуса насоса. Шпильки крепления крышки к корпусу насоса и их гайки не должны задевать за держатель корпуса подшипников.associated hardware must clear the bearing bracket O.D.

ДЕРЖАТЕЛЬ ТИПОРАЗМЕРА 35	ДЕРЖАТЕЛЬ ТИПОРАЗМЕРА 55	ДЕРЖАТЕЛЬ ТИПОРАЗМЕРА 75	ДЕРЖАТЕЛЬ ТИПОРАЗМЕРА 90
9 1/4	11	14 1/2	19 3/8

Тримечания

Все размеры в дюймах.

Отметим, что габаритная длина равна расстоянию от торца корпуса до торца вала. Этот размер должен быть близок к стандартной габаритной длине, указанной на виде в разрезе. В противном случае, может потребоваться изменить длину промежуточного элемента муфты.

Предприятия Ruhrpumpen

Международные центры обслуживания и поддержки

