

Specialist for Pumping Technology

Sessions 13 & 14 – Performance Testing and Inspection of API 610 Pumps

Simon Smith February 2022

Presenter Profile – Simon Smith

Simon graduated with an honours degree in Chemical Engineering from the University of Surrey in 1978 and began a long career in the engineered pump industry spanning 40 years (so far!) with Peerless Pump, BW/IP International / Flowserve, SPP Pumps, Ruhrpumpen and Ebara Cryodynamics.

Over his long career he has filled various roles as Applications Engineer / Manager, Project Manager, Key Account Specialist, Vertical Pump Product Specialist, International Sales Engineer / Manager / Director and he has considerable experience in Training & Mentoring young engineers.

RuhRPumpen Short Courses

Here is a listing of all the previous courses.

- No 1 API610 12th v 11th editions
- No 2 Curve Shape
- No 3 The Importance of System Curves
- No 4 Selecting the Right Pump for the Application
- No 5 NPSH & Nss
- No 6 Mechanical Seals & Systems
- No 7 Firepumps
- No 8 BB5 Barrel Pumps
- No 9 Pump Instrumentation
- No 10 Non-Destructive Examination
- No 11 Vertical Pumps (Part 1) Type VS1, VS2, VS3
- No 12 Vertical Pumps (Part 2) Type VS4, VS5, VS6 & VS7

Any you have missed you can get from our Marketing Dept. Please send an e-mail to info@ruhrpumpen.com referencing the "Short Courses hosted by Simon Smith"

RP

Session 13 – "Performance Testing & Inspection of API 610 Pumps"

Aimed at Process and Mechanical Engineers, and Consultant Engineers who specify pumping equipment as well as Applications & Sales Engineers selecting and quoting them.

This session will look at the What, the Why and the How of Pump Performance Testing (Session 13) and also look at the various Inspections & Tests that are frequently specified on the Data Sheets (Session 14).

PUMP TESTING

The WHAT, the WHY, & the HOW of Centrifugal Pump Testing

A schematic of a typical Test Bed setup, as shown in the Hydraulic Institute standards.

RuhRPumpen

PUMP TESTING

PUMP TESTING

PUMP TESTING

The water flows through the Discharge valve, which provides Flow control by throttling. The water may also be cooled to reduce the temperature to be within the API610 limit of 130F (55C), if extended duration runs are required. This would be achieved either by flowing through a Cooler, or the Tank may have a cool recycled flow.

The WHAT, the WHY, & the HOW of Centrifugal Pump Testing

RuhRPumpen

PUMP TESTING

The Tank & the Sump are sized to allow a retention time of an average of 2 Minutes, to allow turbulence and aeration to settle down, before any given particle of liquid begins the cycle again.

PUMP TESTING

Factory Locations & NPSHR Test Type Carried Out.							
FACTORY LOCATION \rightarrow	TULSA	MONTERREY, MEXICO	WITTEN, GERMANY	EGYPT			
NPSHR TEST TYPE							
SUPPRESSION TYPE VACUUM TESTING	х						
THROTTLED-SUCTION TYPE TESTING		Х	Х	Х			

PUMP TESTING

Suction and Discharge pressures are measured on the test bed at each test flow point, using gauges similar to those shown below. These are located either side of the pump, sufficiently far away to be unaffected by turbulence, and the readings are standardized to the same height.

RuhRPumpen

PUMP TESTING

The electrical power flowing into the Test Motor driving the pump is measured by the Test bed Wattmeter, similar to the unit shown below.

The pump power being absorbed is calculated by multiplying the Wattmeter reading by the Motor Efficiency, at each of the test flow points.

Alternative Method of Measuring the Pump Power:-

PUMP TESTING

Another method of measuring the Pump absorbed power, is by using a Torque Transducer.

This is a more accurate method as it directly measures the pump torque & speed, and so directly establishes the pump absorbed Power. Here is the HP Formula.

HP=2x Pi x N x T /33,000,

(Because 1HP= 33,000 Ft.Lbs/Minute,

Pi=3.142 & N= RPM & T= The TORQUE Measured).

Performance Testing the Pump:

PUMP TESTING

The actual action of testing the pump, and calculating the results is actually quite simple, although the pump setup for a large unit can take time.

The procedure for performance testing pumps are:-

1. Determine how many flow points are needed to meet the test standard, eg. API, HI, etc, and what the value of the Flows are.

2. Run the pump at each Flow point and record the values shown on the next slide.....

PUMP TESTING

The WHAT, the WHY, & the HOW of Centrifugal Pump Testing

Performance Testing the Pump:

At initial setup, after recording all contract & pump details, then record the:-

- Height of these gauges above the pump centreline or a known datumn
- Suction and Discharge pipe size * connected to the pump, at the Gauge take-off points
- Impeller diameter(s), including any underfile details

Also, at each flow point record the:

• Flow

- Suction pressure
- Discharge pressure
- Speed (rpm)
- Water temperature
- Wattmeter reading, giving electrical power flowing into the motor

Vibration levels

RuhRPumpen

Performance Testing the Pump:

PUMP TESTING

From these readings the pump Flow, Speed, differential Head produced & the absorbed Power are calculated at the various flow rates, including the Rated guaranteed point.

These values and the raw data that produced them, are then shown on the Test Log, and pump Curves are produced, and both these are sent to the customer.

Also, Vibration readings are collected, measured at the standard locations on the pumps, which are:-

- For Horizontal pumps:- At the Bearing Housings.
- For Vertical pumps:- At the top flange of the Discharge Head, where the motor is bolted to the pump.

Performance Testing the Pump:

PUMP TESTING

- The first test is carried out with a slightly larger trim diameter Impeller than estimated.
- Then, by evaluating the test results using experience and Affinity Laws, the final test trim needed to reach the Rated duty within the Test tolerances, is calculated.
- The impeller is then trimmed to this slightly smaller diameter, rebalanced, and the pump retested.
- Some test standards state that if, after the first test, it is predicted that the impeller diameter reduction required is 5% or lower, then predicted test values are adequate, without the needing an actual retest. (*API 610 allows this as standard*).

Performance Testing the Pump:

Test Tolerances:

PUMP TESTING

Of course, the acceptability of the test results for the customer, will depend on the results meeting the target values promised when the pump is sold, Plus or Minus the agreed test tolerances.

These tolerances will vary depending on the Test Standard the customer has selected.

Typical Test standard tolerances are shown in the next few slides.

• After test completion:

After all test data has been tabulated and plotted, the results are submitted to the customer as the Test Log package.

PUMP TESTING

TEST TOLERANCES: API 610 LATEST EDITION

TABLE 16 – PERFORMANCE TOLERANCES

CONDITION	RATED POINT %	SHUTOFF %
RATED DIFFERENTIAL HEAD: 0 m to 75 m (0 ft to 250 ft) >75 m to 300 m (>250 ft to 1,000 ft) > 300 m (1,000 ft)	<u>+</u> 3 <u>+</u> 3 <u>+</u> 3	<u>+</u> 10 (a) <u>+</u> 8 (a) <u>+</u> 5 (a)
RATED POWER	4 (b)	_
EFFICIENCY	(c)	
RATED NPSH	0	—

- a. If a rising head flow curve is specified (see 6.1.11), the negative tolerance specified here shall be allowed only if the test curve still shows a rising characteristics.
- b. With test results corrected to rated conditions (see 8.3.3.3 b) for flow, speed, density (specific gravity) and viscosity, it is necessary that the power not exceed 104% of the rated value, from all causes (cumulative tolerances are not acceptable).
- c. The uncertainty of test efficiency by test code specified is \pm 2,5 %; therefore, efficiency is not included in the pump's rated performance. In those applications where efficiency is of prime importance to the purchaser, a specific value and related tolerance should be negotiated at the time of the order (see 8.3.3.4).

PUMP TESTING

Test Tolerances: Hydraulic Institute 14.6

	Grade		Grade 1			Grade 2		Grade 3
		Δt_Q	10%		16%		18%	
		Δt_H		6%)		10%	14%
Test	Guarantee			Acceptance grade			e	
parameter	requirement	Symbol	1B	1E	1U	2B	2U	ЗB
Rate of flow	Mandatory	t _Q (%)	± 5%	± 5%	0% to + 10%	± 8%	0% to +16%	± 9%
Total head	Mandatory	t _H (%)	± 3%	± 3%	0% to + 6%	± 5%	0% to +10%	± 7%
Power ^a	Optional	tp (%)	+ 4%	+ 4%	+ 10%	+ 8%	+ 16%	+ 9%
Efficiency ^a	(either/or)	t _η (%)	- 3%	- 0%	- 0%	- 5%	- 5%	-7%

Table 1 — ANSI/HI 14.6 performance acceptance grade table

^a Efficiency is a calculated value that is dependent on pump power input and, therefore, either minimum efficiency or maximum pump power input at the guarantee point can be specified, but not both.

Test Tolerances: Hydraulic Institute

Six pump performance test acceptance grades are used: 1B, 1E, 1U, 2B, 2U and 3B. Grade 1 is the most stringent, and the "U" specifies having a unilateral tolerance band.

The "B" specifies having a bilateral tolerance band. Acceptance grade 1E can be used when energy efficiency is of importance and is also bilateral.

HI have a good white paper you can download

"Understanding the Effects of Selecting a Pump Performance Test Acceptance Grade"

Here is the link:

PUMP TESTING

https://europump.net/uploads/HI%20White%20Paper%20-

%20Understanding%20the%20Effects%20of%20Selecting%20a%20Pump%20Performance%20Test%20Accept ance%20Grade.pdf

Performance Testing the Pump:

Performance Test printout.

Here we see a typical printout of a Performance Test.

PUMP TESTING

Note that as NPSHR tests have also been carried out, a full NPSHR curve is also shown.

This has been developed from the NPSHR head drop-off tests shown later in these slides.

This sheet, and the Tabulated Data, are sent to the customer as part of the data package.

Ę

NPSHR NPSHR Testing Procedure

- The pump is set to the rated speed.
- At each flow point (typically 5 or 6 flows), while the Suction Pressure is reduced, the Discharge Valve is opened slightly to maintain the constant set Flowrate.
- At each NPSHR Test point, Flow, Head, Suction pressure & Water Temperature readings are taken at progressively lower and lower Suction pressures. Whether the reduction in Suction pressure is due to a Vacuum Suppression Test or a Throttled Suction valve Test.
- At some point, as the Suction Pressure is reduced more and more, the Pump Differential Head will get closer to a 3% Head reduction. So now the Suction Pressure Reduction values are taken closer together.
- After the Head drop has reached 3% at every Flowrate, the NPSH3 test is completed.

RP

RuhRPumpen

RP

NPSHR Testing:

PUMP TESTING

• NPSHR Test procedure:

Here we see a typical printout of an NPSHR head drop-off tests.

This sheet, and the Tabulated Test Data, are sent to the customer as part of the data package.

NPSHR Testing:

Note:- 3% is the pump industry standard definition of NPSHR.

However, customers can re-define NPSHR.

For example:-

- "1% Head drop defines NPSHR"
- Occasionally even 0%, which is called the Inception of Cavitation
- ARAMCO often requires an NPSHR figure based on "that value of NPSHR that will give a predicted Impeller life of 40,000 Hours".

Note:-

The only values that can be proven on the test bed are NPSHR of 3% and 1%.

Onset of Cavitation

NPSH Testing of Vertically Suspended Pumps

During performance testing the pump is suspended in a below-ground suction tank or pit with an open suction bellmouth on the pump (no suction piping).

So clearly we cannot pull a vacuum on the pit or throttle the suction.

To carry out an NPSH Test you need to build the pump as a 1 stage pump and suspend it in the above ground sealed suction tank. You can then pull a vacuum on that tank to carry out the NPSH test.

This is what RP does in its Tulsa factory.

In some factories a VS6 pump might be tested, not in the pit, but in its own suction barrel in the same test loop as a horizontal pump.

Then you can carry out an NPSH test in the normal way either by vacuum suppression, or by suction throttling.

NPSH Testing of Vertically Suspended Pumps

Pumpdown Test

It is often possible to offer a "Pumpdown Test" in an open sump configuration of a VS1 or VS3 pump (or a VS6 pump without its barrel)

The pump will be built for the test with test shop column sections, to get as close as possible to the Minimum Submergence level of the particular pump. Then the pump is run without recirculation of flow back to suction but sending it to drain instead.

This allows the level in the pit to drop until the pump discharge pressure drops indicating you have reached the minimum pumping level.

This is very wasteful of water and municipal water companies may well not allow it.

Performance Testing

Tulsa Test Loop

See attached PDF Photos

Performance Testing

Monterrey Test Loop

See attached PDF Photos

Performance Testing

Monterrey Test Loop

New Vertical Pump Test Pit under construction Depth: 13 m (43ft) Length 22m (72ft) Width 4m (13ft) Volume 2000m³ (528,000 galls)

Coming Attractions

"Performance Testing & Inspection of API 610 Pumps Part 2" Thurs 10th March – <u>08.00 (UK GMT) (Eastern Hemisphere)</u> & <u>17.00 (UK GMT) (Western</u> Hemisphere)

Aimed at Process and Mechanical Engineers, and Consultant Engineers who specify pumping equipment as well as Applications & Sales Engineers selecting and quoting them. This session will look at the What, the Why and the How of Pump Performance Testing (Part 1) and also look at the various Inspections & Tests that are frequently specified on the Data Sheets (Part 2).

Future sessions : 31st March

– Start-up, Commissioning & Troubleshooting of Centrifugal Pumps

OVERVIEW OF PART 2

Specialist for Pumping Technology

Purpose of this presentation

- To give an overview of the types of testing discussed in API 610 11th Edition
- Brief description of methodology and intention of tests and inspections
- Important points from perspective of sales and quotations

Additional descriptions and details of each test are provided in other presentations.

API 610 Datasheet

- Page 5 of the API 610 datasheet reflects the testing and inspection requirements for the pump
- Most lines in the datasheet include an API 610 paragraph reference
- Cell are color coded
- Drop-down options are mostly Yes/No or Non-Wit/Wit/Obs
- This is a change from previous editions on API where datasheets had checkboxes to indicate if a test was required and different columns for witnesses/non witnessed

contain drop-down options			
	-	 	

contain calculated values based on input data that do not change.

identifies a cross-referenced paragraph in the document; note may also contain a drop-down list

1	Note		SURFAC	E PREPAR	ATION AND	PAINT			TEST		
:		MANUFACT	URER'S ST	ANDARD				SHOP INSPECTION (8.1	.1)		
3		OTHER (SE	E BELOW)					PERFORMANCE CURVE	Ξ		
1		SPECIFICA	TION NO.					& DATA APPROVAL PR	IOR TO SHIPMEN	г.	
5								TEST WITH SUBSTITU	TE SEAL (8.3.3.2.6)	
6		PUMP:						MATERIAL CERTIFICAT	FION REQUIRED	CASING	
7		PUMP SUR	FACE PREF	ARATION					[6.12.1.8]	IMPELLER	
8		PHIMER	-							SHAFT	
3		HNISHUUA	d.							UTHER	
			TE.					(E12.2E) (E12.2.E	D PHOGEDORE AP	-FH HE GD	
11		BASEPI AT	F SLIBEACE	PREPARAT	ICN			INSPECTION BEDLIBEI	, DEOBICONNECTIC		234
12		PRIMER						(6.12.3.4	Lei MAG	PARTICLE	
13		FINISH CO/	т					(BADIO	DGRAPHY	- 1
14		DE TAILS D	F LIFTING D	EVICES					LIQU	D PENETRANT	r Ϊ
15		1							ULTR	ASONIC	
16		SHIPMEN	T: (8.4.1)					INSPECTION REQUIRE	DFOR CASTINGS		
17		EXPORT B	XING REQ	UIRED					MAG	PARTICLE	
18		OUTDOOR	STORAGE I	HORE THAN	6 MONTHS				RADIO	JGRAPHY	
									LIQU	D PENETRANT	÷ [
19		SPARE R	DTOR ASS	EMBLY PA	CKAGED F	DR:			ULTR	ASONIC	
20		ROTORST	ORAGE ORI	ENTATION (3.2.8.2)			HARDNESS TEST REQ	UIFIED (8.2.2.7)		
21		SHIPPING 8	STORAGE	CONTAINER	FOR VERT	STORAGE	(9.2.8.3)	ADDNL SUBSURFACE E	EXAMINATION (6.1)	215) (8.2.1.3)	
22		-							FOR		
23		N2 PURGE	9.2.8.4)						METH	-ICD	
24		SPARE PA	NRTS				_	PMI TESTING REQUIRE	ED (8.2.2.8)		
25		START-UP						COMPONENTS TO	BETESTED		
26		NURMAL M	AINTENAN	L	C La						
"				maca			-	HESIDUAL UNBALANCE	E 1E51 (3.4.12)		
28		ITEM No	PUMP	DRIVER	GEAR	BASE	TOTAL	NOTIFICATION OF SUS	SESSFUL SHOP		
29								PERFORMANCE TEST	(8.1.1c) (8.3.3.5)		
30								BASEPLATE TEST (7.3	(21)		
31								HYDROSTATIC			
32			OTUED	DUDCUACE		MENTE		HYDROSTATIC TEST C	IF BOWLS & COLL	JMN (9.3.13.2)	
33		00000	OTTO DA			, mento		PERFURMANCE TEST			
34		LUDUHL	INA HUN M	DEE DOECCI	DHED (10.13) LIDE		TEST IN COMPLIANCE	WITH (8.3.3.2)		
36		mean	DISCHA	NUE FRESS	AX RELATIV	E DENSITY		TEST TOLEBANCES T	0 (8 3 3 4)		
37				OPER		BIP SPEED		NPSH1834310183434	4)		
28				MPELLERS		IF STAGES		NPSH4ST STG ONLY (*) R 3 4 3 21		
39		CONNE	CTION DES	IGN APPROV	(6) (9,2,1,4)			NPSH TESTING TO HIT	16 CE 15C 2906 (8 3	433	
40		TORSI	NAL ANAL	YSIS / REPOR	RT (6.9.2.10)			TEST NPSHA LIMITED	TO 110% SITE NPS	HA (8.3.3.6)	
41		PROGE	ESSREPO	RTS				RETEST ON SEAL LEA	KAGE (8.3.3.2.d)		
42		ουτυκ	E OF PROC	FOR OPTIO	NAL TESTS	(10.2.5)		RETEST REQUIRED AF	TER FINAL HEAD	ADJ (8.3.3.7.b)	
43		ADDITI	DNNAL DAT	AREQUIRIN	3 20 YEARS	RETENTIO	N (8.2.11)	COMPLETE UNIT TEST	F (8.3.4.4.1)		
44		1						SOUND LEVEL TEST (8	3.3.4.5		
45		LATER	AL ANALYS	IS REQUIRED	0 (9.13.4) (9.2	.4.1.3)		CLEANLINESS PRIOR 1	TO FINAL ASSEMB	LY (8.2.2.6)	
16		MODAL	ANALYSIS	REQUIRED (9.3.9.2)			LOCATION OF CLEANL	INESS INSPECTIO	N	
47		DYNAM	IC BALANC	E ROTOR (6:	9.4.4)			NOZZLE LOAD TEST			
48		INSTAL	LATION LIS	T IN PROPO	SAL (10.2.3.I)			CHECK FOR CO-PLANA	R MOUNTING PAI	D SURFACES	
49		VFD ST	EADY STA	TE DAMPED	RESPONSE	ANALYSIS	(6.9.2.3)	MECHANICAL RUN TES	T UNTIL OIL TEM	IP STABLE	
50								4 HR. MECH RUN AFTER	R OIL TEMP STAE	LE (8.3.4.2.1)	
51		TRANS	ENT TORS	IONAL RESP	ONSE (6.9.	2.4]		4 HR. MECH RUN TEST	(8.3.4.2.2)		
52	ļ	BEARIN	IG LIFE CAL	CULATIONS	REQUIRED (6.10.1.6)		TRUE PEAK VELOCITY	DATA		
		IGNITIC	NHAZARD	ASSMT TO B	N 13463-1 (7.)	2.13.e)		BRG HSG RESONANCE	TEST (8.3.4.7)		
53		CASINE	RETIREME	ENT THICKNE	ESS DRAWIN	IG (10.3.2.3)		STRUCTURAL RESONA	NCE TEST (9.3.9.2	9	
54		FLANG	ES RQD IN F	PLACE OF SM	T WELD UN	IONS (7.5.2		REMOVE HINSPECT HY	DRODYNAMIC BE	ARINGS AFTER	1 TES
55		INCLUE	E PLOTTE	VIBRATION	SPECTRA(6.9.3.3)		(9.2.7.5)			
56		CONNE	CTION BOL	TING (7.5.17)				AUXILIARY EQUIPMEN	T TEST (8.3.4.6)		
57		CADMI	IM PLATED	BOLTS PRO	HIBITED			EQUIPMENT TO BE INC	LUDED IN AUXILL	JARY TESTS	
58		VENDO	R TO KEEP	REPAIR AND	HT RCDS (8	(2.1.1.c)					
59	l	VENDO	R SUBMIT "	REST PROCE	DURES (8.3.	1.1)		LOCATION OF AUXILIA	RY EQUIPMENT T	EST	
60		SUBMI'	INSPECT	ON CHECK LI	IST (8.1.5)						
51								IMPACT TEST (6.12.4.3	IJ PER EN 13445		
62		1							PER ASME SI	ECTION VIII	

RUHRPUMPEN

Specialist for Pumping Technology

www.ruhrpumpen.com

info@ruhrpumpen.com

RUHRPUMPEN AT A GLANCE

VERTICAL
INTEGRATIONSALES
OFFICES IN
+35 COUNTRIESMANUFACTURING
FACILITIESMANUFACTURING
IN 10 COUNTRIES

+70 YEARS OF EXPERIENCE

+2,000 EMPLOYEES

15 SERVICE

CENTERS

+70,000 PUMPING SOLUTIONS INSTALLED WORLDWIDE

A GLOBAL COMPANY

Manufacturing facility & Service center

Service center

MANUFACTURING FACILITIES

- USA [Tulsa]
- Germany [Witten]
- Mexico [Monterrey]
- Brazil [Rio de Janeiro]
- Argentina [Buenos Aires]

- Egypt [Suez]
- India [Chennai]
- China [Changzhou]
- Russia [Moscow]
- United Kingdom [Lancing]

MARKETS WE SERVE

Our commitment to create innovations that offer reliable solutions to our customers allow us to provide a complete range of pump systems to support **core markets** as:

· fat

WATER

CHEMICAL

INDUSTRIAL

OUR PUMP LINES

Ruhrpumpen offers a broad range of highly engineered and standard pumping products that meet and exceed the requirements of the most demanding quality specifications and industry standards.

Our pumps can handle head requirements as high as 13,000 ft (4,000 m) and capacities up to 300,000 gpm (68,000 m³/hr). Moreover, our pump designs cover temperatures from cryogenic temperatures of -310 °F (-196 °C) up to 752 °F (400 °C).

Products include:

- Single Stage Overhung Pumps
- Between Bearings Pumps
- Horizontal Multi-Stage Pumps
- Vertical Multi-Stage Pumps
- Vertical Mixed Flow & Axial Flow Pumps
- Positive Displacement Pumps
- Full Range of Industrial Pumps
- Submersible Pumps
- Magnetic Drive Pumps
- Decoking Systems
- Packaged Systems
- Fire Systems

DUR PUMPS

OVERHUNG PUMPS

CATEGORY	RP MODEL	DESIGN STANDARD	
Sealless Magnetic	CRP-M / CRP-M-CC	ISO 2858 & 15783 HI design (OH11)	
Drive Pumps	SCE-M	API 685	
	IPP	HI design (OH1)	
	CPP / CPP-L	HI design (OH1) ANSI B73.1	
Foot Mounted OH1 and General End Suction	CPO / CPO-L	HI design (OH1) ANSI B73.1	
	CRP	HI design (OH1) ISO 2858 & 5199	
Pumps	GSD	HI design (OH0)	IEX *
	SHD / ESK / SK / SKO SKV / ST / STV	HI design (OH1)	
	SWP	HI design (OH3A)	Õ
Centerline Mounted	SCE	API 610 (OH2)	
	SPI	API 610 (OH3)	· · · · · · · · · · · · · · · · · · ·
Vertical In-Line	IVP / IVP-CC	HI design (OH4 / OH5)	
Pumps	IIL	HI design (OH5) Dimensionally compliant with ANSI B73.2	
	SPN	API 610 (OH5)	

BETWEEN BEARING PUMPS

RP

CATEGORY		RP MODEL	DESIGN STANDARD		
1 and 2 stage	Axially split		HSC / HSD / HSL HSR / ZW	HI design (BB1)	
		HSM	HI design (BB3)		
		ZM / ZMS ZLM / ZME	API design (BB1)		
	Radially split	HVN / J	API design (BB2)		
		RON / RON-D	API design (BB2)		
	Avially aplit	SM / SM-I	API design (BB3)		
Multi-stage		JTN	API design (BB3)		
	Radially split single casing	GP	API design (BB4)		
	Radially split double casing	A LINE	API design (BB5)		

VERTICAL PUMPS

	CATEGORY	RP MODEL	DESIGN STANDARD	
		VTP	HI & API 610 (VS1)	
	Diffusor	VCT	HI & API 610 (VS1)	
	Diruser	HQ	HI & API 610 (VS1)	I
		VLT	HI & API 610 (VS1)	
Single casing	Volute	DSV / DX	HI & API 610 (VS2)	
	Discharge through column – Axial flow	VAF	HI & API 610 (VS3)	
	Separate discharge line	VSP / VSP-Chem	HI & API 610 (VS4)	
Double	Diffuser	VLT / VMT	HI & API 610 (VS6)	
casing	Volute	DSV / DX	HI & API 610 (VS7)	
Submersible pumps		SMF	HI design (OH8A)	
		VLT-Sub / VTP-Sub	HI design (VS0)	ſ

SPECIAL SERVICE PUMPS

DESIGN CATEGORY **RP MODEL STANDARD** Pitot tube pumps COMBITUBE HI design API 674 RDP **Reciprocating pumps** ISO 13710 Vertical turbine VTG HI design (VS6) generator LS BARGE Barge HI design ZVZ HI design Floating dock pumps LVZ HI design **SVNV VTG Cryogenic** Cryogenic pumps **VLT Cryogenic VLTV** Fire systems incorporate pumps, drivers, control systems and NFPA-20-850 pipework in a single container. Pre-packaged fire They can be skid mounted, with UL and FM approved pump systems or without enclosure and components supplied with electric motor or diesel engine.

OUR PUMPS

RP