

Specialist for Pumping Technology

Session 25 – Magnetic Drive Pumps

Simon Smith September 2023

Presenter Profile – Simon Smith

Simon graduated with an honours degree in Chemical Engineering from the University of Surrey in 1978 and began a long career in the engineered pump industry spanning 40 years (so far!) with Peerless Pump, BW/IP International / Flowserve, SPP Pumps, Ruhrpumpen and Ebara Cryodynamics.

Over his long career he has filled various roles as Applications Engineer / Manager, Project Manager, Key Account Specialist, Vertical Pump Product Specialist, International Sales Engineer / Manager / Director and he has considerable experience in Training & Mentoring young engineers.

Here is a listing of all the previous courses.

- No 1 API610 12th v 11th editions
- No 2 Curve Shape

RP

- No 3 The Importance of System Curves
- No 4 Selecting the Right Pump for the Application
- No 5 NPSH & Nss
- No 6 Mechanical Seals & Systems
- No 7 Firepumps
- No 8 BB5 Barrel Pumps
- No 9 Pump Instrumentation
- No 10 Non-Destructive Examination
- No 11 Vertical Pumps (Part 1) Type VS1, VS2, VS3
- No 12 Vertical Pumps (Part 2) Type VS4, VS5, VS6 & VS7

- No 13 Performance Testing of Centrifugal Pumps; the What, the Why & the How
- No 14 Testing & Inspection of API 610 Pumps
- No 15 Start-Up, Commissioning & Troubleshooting Centrifugal Pumps
- No 16 Introduction to Positive Displacement (Plunger) Pumps
- No 17 Refresher Session
- No 18 Overhung Process Pumps OH1 & OH2
- No 19 Vertical Overhung Process Pumps OH3-OH6
- No 20 New Developments in the VS6 Market
- No 21 BB4 Multistage Pumps for the Power Industry
- No 22 Coking Process and Hydraulic Decoking Equipment
- No 23 Pumps for the Desalination Market
- No 24 Cryogenic Pumps

Any you have missed you can get from our website using this link <u>https://short-courses.ruhrpumpen.com/</u>

Or from <u>www.ruhrpumpen.com</u> and follow the link to <u>RP Short Courses</u>

www.ruhrpumpen.com

RUHRPUMPEN

RP

About RP v Markets v Products v Services v Downloads Contact Select your pump RP short courses

Media Center

More Articles

Introducing the new Ruhrpumpen Website

Impeller Lift Procedure

Newsletter Ruhrpumpen Fire Systems - December 2022

VTP pumps for major water transfer project in Bolivia

COVID-19 UPDATE

Introducing the RP ANSI Process Pump Range

Ruhrpumpen Resources

Coolant System Maintenance

RP delivers API 674 pumps for Gas Dehydration Package in

Algeria

Packing strips and packing gland tightening procedure

All Courses

Don't miss our short course #25

COMING SOON

Simon Smith Solutions Expert

https://short-courses.ruhrpumpen.com/

SHORT COURSE 12

Vertical Pumps (VS4/5, VS6, VS7)

Full session.

🕒 Downloads. (14.73 MB)

SHORT COURSE 13

Performance Testing and Inspection of API 610 Pumps

Full session.

🕒 Downloads. (4.58 MB)

SHORT COURSE 14

Performance Testing and Inspection of API 610 Pumps

Full session.

🕒 Downloads. (7.30 MB)

https://short-courses.ruhrpumpen.com/

SHORT COURSE 14

Performance Testing and Inspection of API 610 Pumps

Full session.

🕒 Downloads. (7.30 MB)

SHORT COURSE 15

Start-Up, Commissioning & Troubleshooting Centrifugal Pumps

Full session.

🕒 Downloads. (6.14 MB)

SHORT COURSE 16

Introduction to Positive Displacement (Plunger) Pumps

Session part 1.

Session Part 2.

🕒 Downloads. (10.50 MB)

Session 25 – Magnetic Drive Pumps

RP

This Short Course will look at Magnetic Drive Pumps used in the Chemical & Process Industries, to ANSI, ISO & API 685 standards.

A "dark art" to many pump engineers (even experienced ones) this course is aimed at Process and Mechanical Engineers and Consultant Engineers who specify pumping equipment as well as Applications & Sales Engineers selecting and quoting them. It will address the subject matter from first principles. Pumping Technology for Life...

Magnetic Drive Pumps Training

Adam Pye

1	What is Mag-Drive
2	Why choose a Mag-Drive
3	How does a Mag-Drive work
4	Features and Benefits
5	Industrial Standards
6	Questions and Answers
7	
8	
9	
10	

Magnetic Drive Sealless Pumps | What is a Magnetic Drive Pump?

 Magnetic Drive refers to the method of how the Hydraulic is driven and how the liquid is handled within the machine.

Resulting in:

- The liquid being fully 'contained' within the Containment Shell.
- Drive and Driven ends are completely separated from the process fluid.

What is a Mag-Drive?

Magnetic Drive Sealless Pumps | Why choose a Magnetic Drive Pump?

Mag-Drive – Secondary Containment

- Zero leakage even with catastrophic failure.

Why use a Mag-Drive?

- Types of Fluids:
 - Harmful, toxic, flammable, explosive, heat transfer or expensive.
- Less Maintenance
 - Unmanned applications.
- Reduced installation costs (compared to double mechanical seal).
- Temperatures (-120°C to +450°C) [-184°F to +840°F].

- WHY NOT?
- Common limitations...
- Pressure (Dependent on size).
- Power Maximum the selected Magnetic Coupling can transmit. (Again dependent on hydraulic/size)
 - Viscosity Stick within Manufacturer's limits.
- Vapour
- Solids
- Vapour Pressure margin must be maintained! See Slide 36.
- Narrow flow passages might be clogged, but there are common fixes for this problem so it is not a big constraint See Slides 35 & 43

Magnetic Drive Sealless Pumps | **How** does a Magnetic Drive Pump work?

Magnetic Drive

- ☑ Magnetic Coupling
- ☑ Containment Shell
- ☑ Internal Bearing Feed System
- ☑ Internal Bearings
- ☑ No Leakage

Magnetic Drive

- ☑ Magnetic Coupling
- ☑ Containment Shell
- ☑ Internal Bearing Feed System
- ☑ Internal Bearings
- ☑ No Leakage

Magnetic Drive

☑ Magnetic Coupling

- ☑ Containment Shell
- ☑ Internal Bearing Feed System
- ☑ Internal Bearings
- ☑ No Leakage

Magnetic Drive

Magnetic Coupling

- ☑ Containment Shell
- ☑ Internal Bearing Feed System
- ☑ Internal Bearings

☑ No Leakage

Magnetic Drive

Magnetic Losses

Magnetic Coupling

☑ Containment Shell

Internal Bearing Feed System
Internal Bearings
No Leakage

Magnetic Drive

☑ Magnetic Coupling

☑ Containment Shell

- ☑ Internal Bearing Feed System
- ☑ Internal Bearings
- ☑ No Leakage

316 SS / Hastelloy Hybrid Containment Shell

Magnetic Drive

- ☑ Magnetic Coupling
- ☑ Containment Shell
- ☑ Internal Bearing Feed System
 ☑ Internal Bearings
 ☑ No Leakage
- Metallic Hybrids.
- Full Metallic Fabrications.
- Solid Machined.
- Ceramics and Composites.
- Plastics.

Magnetic Drive

☑ Magnetic Coupling

☑ Containment Shell

☑ Internal Bearing Feed System

☑ Internal Bearings

☑ No Leakage Vapour Pressure Curve 14 Liquid State Discharge 13 12 re (Bar) MCSE BEP Rear of Shell — MAX Se 10 RATED ----Vapour Pressure Gaseous State 19 20 21 22 23 24 25 Temperature ('C)

Magnetic Drive

☑ Magnetic Coupling

☑ Containment Shell

☑ Internal Bearing Feed System

☑ Internal Bearings

☑ No Leakage

Typically:

- Silicon Carbide.
- Carbon.
- Heat-Shrunk into position.
- Include Flow/Lubrication Grooves.

Heart of the pump!

Potential Risks:

U Viscosity

Solids

Lack of Flow

Magnetic Drive

☑ Magnetic Coupling

☑ Containment Shell

☑ Internal Bearing Feed System

☑ Internal Bearings

☑ No Leakage

Typically:

- Silicon Carbide.
- Carbon.
- Heat-Shrunk into position.
- Include Flow/Lubrication Grooves.

Heart of the pump!

Potential Risks:

- Viscosity Maintain Manufacturer's Limits
 Solids
 - 1%-5% by Weight, 0.15mm-0.4mm (0.006"-0.015") in Size
- Lack of Flow Be above MCSF

Magnetic Drive

☑ Magnetic Coupling ☑ Containment Shell ☑ Internal Bearing Feed System ☑ Internal Bearings ☑ No Leakage TEDA

Magnetic Drive

- ✓ Magnetic Coupling
- ☑ Containment Shell
- ☑ Internal Bearing Feed System
- ☑ Internal Bearings
- ☑ No Leakage

☑ Options

- Secondary Control
- Secondary Containment
- Filtration
- Heating
- Inducer
- Vortex / Turbulence Preventer

- Traditionally through a Bearing Isolator.
- Double Walled Containment Shell, or other mechanical seal.
- Internal or External.
- Casing and/or Magnetic Coupling Housing.
- Low NPSH applications.
- Suggested for applications with solids.

Optional: Secondary Control System

- 1 The intermediate housing acts as a secondary pressure casing and is equipped with a labyrinth system to the atmosphere
- A Secondary Control System also includes an additional labyrinth system on the containment shell to help restrict flow in case of a containment shell failure
- The presence of liquid or
 the increase in pressure can be monitored and the liquid can be drained

Secondary Containment System

In addition to the internal standard containment shell a secondary containment shell is supplied in order to provide full secondary containment

- 1
- Each containment shell has the same pressure rating and wall thickness
- A monitoring system can be used to monitor the integrity of both the internal and external shell for damage

3.65

secondary containment

Confinement of the pumped liquid within a secondary pressure casing in the event of failure of the primary containment shell or stator liner.

3.66

secondary containment system

Combination of devices that, in the event of leakage from the primary containment shell or stator liner, confines the pumped liquid within a secondary pressure casing that includes provisions to indicate a failure of the primary containment shell or stator liner.

3.67

secondary control

Minimization of release of pumped liquid in the event of failure of the containment shell or stator liner.

3.68

secondary control system

Combination of devices (including a secondary pressure casing) that, in the event of leakage from the containment shell or stator liner, minimizes and safely directs the release of pumped liquid. It includes provision(s) to indicate a failure of the containment shell or liner.

6.7.3 The secondary control system shall have a stand-by life of at least 25,000 hours in a pump operating mode and shall have a functional life of at least 24 hours in the event of containment shell failure.

		API-685			
RUHRPUMPEN	Secondary Control/Containment Logic	Secondary Control/ Containment	Canned Motor Pumps	Magnetic Drive Pumps	Appdx B
	Start Group Tmax > Tauto Ignition or Tmax > 260 °C NO NO Group II YES VES VES VES VES VES OR Tmax > 1% OR VES VES VES VES VES VES VES VES	Secondary containment system (3.66)	 Leakage detection in pump stator (7.4.2.3). (S) Pump power monitoring (7.4.2.2) or flow monitoring. (A) Liquid detection in vertical section of discharge piping or on top of the heat exchanger if the pump has an external cooler. (A) Stator Liner temperature monitoring (7.4.2.4). (A) Motor winding thermocouple. (S) Flanged secondary casing drain (6.7.9). Decontamination flush (9.2.2.11). 	 Secondary pressure casing. Secondary pressure casing pressure monitoring. (S) ¹ Containment shell temperature monitoring. (A) ² Pump power monitoring (7.4.2.2) or flow monitoring. (A) Liquid detection in vertical section of discharge piping. (A) Containment shell temperature monitoring (7.4.2.4). (A) Flanged secondary casing drain (6.7.9). 	
	Group III NO NO Flashing al YES NO YES	Secondary control system (3.68)	 Leakage detection in pump stator (7.4.2.3). (S) Pump power monitoring (7.4.2.2) or flow monitoring. (A) Liquid detection in vertical section of discharge piping or on top of the heat exchanger if the pump has an external cooler. (A) Stator Liner temperature monitoring (7.4.2.4). (A) Motor winding thermocouple (9.2.2.12). (S) Flanged secondary casing drain (6.7.9). Decontamination flush (9.2.2.11). 	 Single containment shell. Containment shell temperature monitoring. (S)² Pump power monitoring (7.4.2.2) or flow monitoring. (A) Liquid detection in vertical section of discharge piping. (A) Containment shell temperature monitoring (7.4.2.4). (A) Flanged secondary casing drain (6.7.9) or vent connected to plan 65 drain pot or Plan 75 vent system. (S) Bearing protector seal to be approved by User (9.1.2.2.2). 	
	H ₂ S > 0.1 % YES NO PA6 Cat 1 R49 Cat 1 ar M350() YES	Secondary control (3.67)	 Pump power monitoring (7.4.2.2) or flow monitoring. (A) Liquid detection in vertical section of discharge piping or on top of the heat exchanger if the pump has an external cooler. (A) Motor winding thermocouple (9.2.2.12). (S) 	 Single containment shell. Pump power monitoring (7.4.2.2) or flow monitoring. (A) Liquid detection in vertical section of discharge piping. (A) Flanged secondary casing drain (6.7.9). Bearing protector seal to be approved by User (9.1.2.2.2). 	
	Group IV YES	none	 Liquid detection in vertical section of discharge piping or on top of the heat exchanger if the pump has an external cooler. (A) Motor winding thermocouple (9.2.2.12). (S) 	 — Single containment shell. — Liquid detection in vertical section of discharge piping. (A) — Bearing protector seal to be approved by User (9.1.2.2.2). 	

Secondary Containment System

In addition to the internal standard containment shell a secondary containment shell is supplied in order to provide full secondary containment

- 1
- Each containment shell has the same pressure rating and wall thickness
- A monitoring system can be used to monitor the integrity of both the internal and external shell for damage

Ceramic Containment Shell

 \bigcirc

Made of Zirconium Oxide

Magnetic losses are eliminated and efficiency is increased significantly

The pump has effectively the same efficiency as a mechanical seal pump.

The fastening is via a locking ring that guarantees easy assembly and disassembly

Main Stream Filter

- Assembled on the discharge flange of the pump
- In case of solids in the process, clean fluid is provided to the journal bearings and the magnetic drive for lubrication and cooling
- 3 The main stream filter is self cleaning

Casing and Intermediate Lantern Heating and Cooling

- The pump can be equipped with a heating or cooling jacket at the casing
- 2 The pump can also be equipped with a heating or cooling jacket of the intermediate housing
- Both heated or cooled areas can be operated independently, or in conjunction with each other

External Flushing Lubrication

Magnetic drive and the journal bearings can be supplied with clean product for cooling and lubrication

Inducer

NPSHr of a pump can be significantly reduced by using an inducer

> The addition of an inducer will have very little impact on the pump hydraulic characteristic

The addition of an inducer to an existing pump can usually be done without any major modifications to the pump

Magnetic Drive Sealless Pumps | Features and Benefits

"Mag-Drive" Creating the Finest Example

- No leakage of product
- Zero emissions
- No mechanical seal or seal support system
- Reduced installation cost
- Complete fluid containment
- Improved operator safety
- Protection of the environment

Magnetic Drive Sealless Pumps | Industrial Standards

 ISO Hydraulics — ASME Hydraulics API Hydraulics — 								1.5x1x6 1.5x1x8 2x1x10	 → 040-025-125 > 040-025-160 > 040-025-200 > 050-032-125 > 050-032-160 > 050-032-200 > 050-032-250 > 065-040-125 > 065-040-160
	2x1x8 3x1x9.5 3x1x10 3x1x11 3x1x12 3x1.5x7 3x1.5x7.5	3x1.5x8 3x1.5x9 3x1.5x10 3x1.5x11 3x1.5x11.5 3x2x7 3x2x11	4x1.5x12 4x2x9 4x2x11.5 4x2x14 54x2x15 4x2x15 4x2x17 4x3x7	4x3x7.5 4x3x8 4x3x11 4x3x12.5 4x4x7.5 6x2x16 6x3x9	6x3x16 6x3x19 6x4x7 6x4x8.5 6x4x9 6x4x10 6x4x11	6x4x11.5 6x4x12 6x4x13 6x4x14 6x4x16 6x4x19 6x4x21	6x6x9 6x6x11 6x6x12 8x6x10.5 8x6x14	3x1.5x6 3x1.5x8 3x1.5x10 3x1.5x13 3x2x6 3x2x8 3x2x10 3x2x13	065-040-160 065-040-200 065-040-250 065-040-315 080-050-125 080-050-160 080-050-200 080-050-250 080-050-315 100-065-125 100-065-160
The pump designation follow	s these rules	5:						4x3x8	100-065-200 100-065-250
				Construction designs Magnet system length Magnet drive size Nominal impeller diameter Pump discharge nozzle - nomial width Pump suction nozzle - nominal width Series		4x3x10 4x3x13 6x4x10 6x4x13 6x4x15 6x4x17 8x6x13 8x6x15	100-065-315 125-080-160 125-080-200 125-080-250 125-080-315 125-100-200 125-100-250 125-100-315 125-100-400 150-125-250 150-125-315 150-125-400 200-150-250 200-150-315 200-150-400		

RUHRPUMPEN

- ISO Hydraulics
- ASME Hydraulics
- API Hydraulics

Typical Differences:

	API	AS	ME	ISO	
Pressure ratings	40 Bar	18.9 Bar		16 Bar	
Wear Rings	Both Casing and Impeller	Casing ONLY (Maximum)			
Mounting	Centerline	Foot (as standard)			
Dimensional	NO standard	B73.3 ISO 2858		2858	
Testing and Inspection	Mandatory	Optional			

RP has been building Mag Drive Pumps since 2012 In that time we have manufactured 675 pumps Here are some interesting statistics.

The RP range of pump sizes is similar to the other big players in the market so I think these statistics can be applied across the industry.

- 80% are < 10kW</p>
- 90% are < 20kW</p>
- 7% are between 20 & 50kW
- 3% are > 50kW
- 10% are API build
- 90% ANSI / ISO build
- The largest power we have built is 160kW

Coming Attractions

"Mechanical Seals and Sealing Systems"

Thur 21st September – <u>08.00 (UK GMT+1) (Eastern Hemisphere)</u> & <u>17.00 (UK GMT+1) (Western</u> Hemisphere)

Aimed at Process and Mechanical Engineers and Consultant Engineers specifying pumping equipment as well as Applications & Sales Engineers selecting and quoting them. Develop an understanding of the fundamentals of sealing technology, the types of seals available and their associated sealing support systems (piping plans).

Future sessions :

- Understanding System Curves
- NPSH

RUHRPUMPEN

Specialist for Pumping Technology

info@short-courses.ruhrpumpen.com

www.ruhrpumpen.com

RUHRPUMPEN AT A GLANCE

VERTICAL
INTEGRATIONSALES
OFFICES IN
+35 COUNTRIESMANUFACTURING
FACILITIESMANUFACTURING
IN 10 COUNTRIES

+70 YEARS OF EXPERIENCE

+2,000 EMPLOYEES

15 SERVICE

CENTERS

+70,000 PUMPING SOLUTIONS INSTALLED WORLDWIDE

A GLOBAL COMPANY

Manufacturing facility & Service center

Service center

MANUFACTURING FACILITIES

- USA [Tulsa]
- Germany [Witten]
- Mexico [Monterrey]
- Brazil [Rio de Janeiro]
- Argentina [Buenos Aires]

- Egypt [Suez]
- India [Chennai]
- China [Changzhou]
- Russia [Moscow]
- United Kingdom [Lancing]

MARKETS WE SERVE

Our commitment to create innovations that offer reliable solutions to our customers allow us to provide a complete range of pump systems to support **core markets** as:

· fat

WATER

CHEMICAL

INDUSTRIAL

OUR PUMP LINES

Ruhrpumpen offers a broad range of highly engineered and standard pumping products that meet and exceed the requirements of the most demanding quality specifications and industry standards.

Our pumps can handle head requirements as high as 13,000 ft (4,000 m) and capacities up to 300,000 gpm (68,000 m³/hr). Moreover, our pump designs cover temperatures from cryogenic temperatures of -310 °F (-196 °C) up to 752 °F (400 °C).

Products include:

- Single Stage Overhung Pumps
- Between Bearings Pumps
- Horizontal Multi-Stage Pumps
- Vertical Multi-Stage Pumps
- Vertical Mixed Flow & Axial Flow Pumps
- Positive Displacement Pumps
- Full Range of Industrial Pumps
- Submersible Pumps
- Magnetic Drive Pumps
- Decoking Systems
- Packaged Systems
- Fire Systems

DUR PUMPS

OVERHUNG PUMPS

CATEGORY	RP MODEL	DESIGN STANDARD	
Sealless Magnetic	CRP-M / CRP-M-CC	ISO 2858 & 15783 HI design (OH11)	
Drive Pumps	SCE-M	API 685	
	IPP	HI design (OH1)	
	CPP / CPP-L	HI design (OH1) ANSI B73.1	
Foot Mounted	CPO / CPO-L	HI design (OH1) ANSI B73.1	
OH1 and General End Suction	CRP	HI design (OH1) ISO 2858 & 5199	
Pumps	GSD	HI design (OH0)	IEX *
	SHD / ESK / SK / SKO SKV / ST / STV	HI design (OH1)	
	SWP	HI design (OH3A)	Õ
Centerline Mounted	SCE	API 610 (OH2)	
	SPI	API 610 (OH3)	· · · · · · · · · · · · · · · · · · ·
Vertical In-Line	IVP / IVP-CC	HI design (OH4 / OH5)	
Pumps	IIL	HI design (OH5) Dimensionally compliant with ANSI B73.2	
	SPN	API 610 (OH5)	

BETWEEN BEARING PUMPS

RP

CATE	GORY	RP MODEL	DESIGN STANDARD	
1 and 2 stage	Axially split	HSC / HSD / HSL HSR / ZW	HI design (BB1)	
		HSM	HI design (BB3)	
		ZM / ZMS ZLM / ZME	API design (BB1)	
	Radially split	HVN / J	API design (BB2)	
		RON / RON-D	API design (BB2)	
	Avially split	SM / SM-I	API design (BB3)	
Multi stage		JTN	API design (BB3)	
Multi-Stage	Radially split single casing	GP	API design (BB4)	
	Radially split double casing	A LINE	API design (BB5)	

VERTICAL PUMPS

CATEGORY		RP MODEL	DESIGN STANDARD	
	Diffuser	VTP	HI & API 610 (VS1)	
		VCT	HI & API 610 (VS1)	
		HQ	HI & API 610 (VS1)	I
		VLT	HI & API 610 (VS1)	2
Single casing	Volute	DSV / DX	HI & API 610 (VS2)	
	Discharge through column – Axial flow	VAF	HI & API 610 (VS3)	
	Separate discharge line	VSP / VSP-Chem	HI & API 610 (VS4)	
Double casing	Diffuser	VLT / VMT	HI & API 610 (VS6)	
	Volute	DSV / DX	HI & API 610 (VS7)	
Submersible pumps		SMF	HI design (OH8A)	
		VLT-Sub / VTP-Sub	HI design (VS0)	ſ

SPECIAL SERVICE PUMPS

DESIGN CATEGORY **RP MODEL STANDARD** Pitot tube pumps COMBITUBE HI design API 674 RDP Reciprocating pumps ISO 13710 Vertical turbine VTG HI design (VS6) generator LS BARGE Barge HI design ZVZ HI design Floating dock pumps LVZ HI design **SVNV VTG Cryogenic** Cryogenic pumps **VLT Cryogenic VLTV** Fire systems incorporate pumps, drivers, control systems and NFPA-20-850 pipework in a single container. Pre-packaged fire They can be skid mounted, with UL and FM approved pump systems or without enclosure and components supplied with electric motor or diesel engine.

OUR PUMPS

RP